Regional wave data assimilation, using NEMOVAR and a refined grid wave model

Presentation to 2nd INTERNATIONAL WORKSHOP ON WAVES, STORM SURGES AND COASTAL HAZARDS Andy Saulter

12th November 2019

Co-authors: Chris Bunney, Rob King, Jennie Waters

www.metoffice.gov.uk

Research conducted as part of the EU Horizon 2020 project 'CEASELESS'

Summary

- NEMOVAR and Spherical Multiple-Cell grid WAVEWATCH III model run with assimilation via updates to the ww3_uprstr.ftn module
- In seas of the Northwest European Continental Shelf the assimilation benefits forecasts on 6-12 hour lead time-scales; this is rather shorter than Global model equivalents
- Inclusion of in-situ data in the assimilation makes a significant improvement relative to satellite-only DA, but only for the first few hours of forecast
- DA using observations in the offshore zone positively impacts coastal zone forecasts; coastal assimilation has higher impact but is extremely localised in space and time

The system: regional wave models for the Northwest European Shelf

1.5 1.8 2.1 2.4

AMM7 – 7km regular grid AMM15S – 3-1.5km SMC grid Used for DA configuration trials Used for DA

All trials forced using Unified Model global winds (17km) and surface currents from corresponding NWS physical ocean models (AMM7/AMM15)

The system: Data Assimilation set-up (1)

• NEMOVAR 3DVAR, FGAT:

- Observation operator uses nearest neighbour
- Assimilation applied to regular gridded data
- SMC girds mapped to regular grid and then back to unstructured sea-point arrays at update
- 6-hourly update cycle using direct initialisation at end of analysis period
- Significant wave height increments are applied to wave spectra at start point of next forecast/analysis cycle

Cvcle: 20170205T0000Z

The system: Data Assimilation set-up (2)

• NEMOVAR 3DVAR, FGAT:

- Domain variant error covariance and lengthscales derived from Canadian Quick analysis of 2-year free run
- Error standard deviations determined from percentage correction of model background (using Palmer and Saulter, 2013; 10% for obs, 15% for model)
- Spectral update method following Lionello et al. (1992) and Toba (1973) – varying treatment of spectrum dependent on windsea or swell dominated conditions*

* Options available as extension to ww3_uprstr.ftn; wind correction component of Lionello et al. scheme to be added

Experiments: Open waters and coastal impacts trials

- 2 month trials using AMM15S
- Measure bias and error variance contributions to change in $Skill_{MSE}$ relative to non-assimilative run
- $Skill_{MSE} = \frac{Bias^2 + Var[x_{model} x_{observed}]}{Var[\bar{x}_{observed} x_{observed}]}$
- Subset of in-situ platforms used to assess sub-regional variations:
 - Background wave climate
 - Open vs coastal waters
 - Availability of upstream observations

Experiments: Impact of altimeters and extending coastal coverage

- Altimeter only experiments:
 - ACMA: S-3, J-3, J-2, Cryosat, Altika masked within 40km of coast
 - AEXT: As above, S-3 and J-3 masked within 8km
- Using altimeters delivers a general improvement in random errors over lead times up to T+12
- Little impact from coastal extension

Experiments: Impacts of altimeter and offshore in-situ data

- Impact of including offshore in-situ observations alongside altimeter:
 - ACMA-IG05: In-situ observations 'greylisted' at 50% using random draw
- Additional value added in first 3-6 hours
- Corrects biases introduced by altimeter (or poor calibration of altimeter in these experiments)

Experiments: Impacts of coastal in-situ data

- Impact of including offshore and coastal in-situ observations:
 - AEXT-CG05: Coastal in-situ observations 'greylisted' at 50% using random draw
 - Potentially non-independent verification in open and coastal waters
- Significant impact on random errors where verifying buoys are used in coastal assimilation – but only in first hour!
- Negligible effects thereafter

Discussion: Results in context

- RMSE for Hs, for a bit of context
- Although relative impact is similar in open waters and coastal zones the main practical impact (RMSE reduction 5-10cms) is in open waters
- Impactful system memory closer to 6-12 hours – vs global impacts of order 24 hours plus
- Tests on other parameters showed no significant improvements (consistent with other studies)

Discussion: Practical impacts of regional DA scheme

- For the NWS region, 'system memory' is of order 6-12 hours
 - Short correlation lengthscales versus data coverage
 - Forced-dissipative system, the model tends back toward forcing atmosphere and internal parameterizations quickly; particularly in high latitude regions
 - To improve this, we need to adjust the winds (atmosphere model!) as well as the waves roll on coupled DA...
- Significant impact of assimilating local in-situ observations in first 3 hours
 - Non-independent verification but users likely to want model results as close to in-situ observations as possible; so still 'a result' in practise
 - Very short lived effect demonstrates the longer term, lower impact value of upstream observations
- In practise data delivery timescales suggest that regional DA best suited for nowcast and re-analysis applications
 - But likely to be worth trying this for global (longer lengthscales) and application of SAR spectra (improve wave periods, an Hs based assimilation does not tend to improve these parameters)

Thankyou for listening

Additional slides

A quick diversion – MSE skill score

- Used as a basis for assessing assimilation impact versus a control (nonassimilative) run
- Relative metric, allows comparison of offshore and coastal zone impacts, which are otherwise related to background parameter variability (e.g. in RMSE)
- Using MSE allows simple decomposition of bias and error variance terms

•
$$Skill_{MSE} = \frac{MSE[model-observation]}{MSE[observed mean-observation]} = \frac{\sum(x_{model}-x_{observed})^2}{\sum(\bar{x}_{observed}-x_{observed})^2}$$

• $Skill_{MSE} = \frac{Bias^2 + Var[x_{model}-x_{observed}]}{Var[\bar{x}_{observed}-x_{observed}]}$

 Scale of 0 (complete match to observations) to infinity; no skill versus observed climate at value of 1

Experiments: Variation of data volumesNumber of assimilated data at unique locations in domain

Experiments: Impact of altimeters and extending coastal coverage

• Estimate of 'work done' by altimeter only run with DA

Experiments: Impact of altimeters and extending coastal coverage

- Altimeter only experiments:
 - ACMA: S-3, J-3, J-2, Cryosat, Altika masked within 40km of coast
 - AEXT: As above, S-3 and J-3 masked within 8km
- Using altimeters delivers a general improvement in random errors over lead times up to T+12
- Little impact from coastal extension
 - Comparison of increments shows work is done by DA scheme, but not universally and RMS increment differences are limited (3-5cm) versus in-situ impacts (10-20cm)

Experiments: Impacts of altimeter and offshore in-situ data

• Difference in work done by altimeter DA run versus altimeter + offshore in-situ data run

Experiments: Checking impact of including verifying observations in DA scheme

- Impact of including offshore and coastal in-situ observations:
 - 'Greylisted' at 50% using random draw
 - Limited impact of removing verifying observations in open waters
 - Potentially non-independent verification in coastal waters

